orca_sdk.async_client#
ColumnType
module-attribute
#
The type of a column in a datasource
JobStatus
module-attribute
#
JobStatus = Literal[
"INITIALIZED",
"DISPATCHED",
"WAITING",
"PROCESSING",
"COMPLETED",
"FAILED",
"ABORTING",
"ABORTED",
]
Status of job in the job queue
PretrainedEmbeddingModelName
module-attribute
#
PretrainedEmbeddingModelName = Literal[
"CLIP_BASE",
"GTE_BASE",
"CDE_SMALL",
"DISTILBERT",
"GTE_SMALL",
"MXBAI_LARGE",
"E5_LARGE",
"BGE_BASE",
"GIST_LARGE",
]
Names of pretrained embedding models that are supported by OrcaCloud
WorkerStatus
module-attribute
#
Status of worker in the worker pool
ActionRecommendation
#
PRCurve
#
PredictionFeedbackRequest
#
RegressionMetrics
#
Bases: TypedDict
explained_variance
instance-attribute
#
Explained variance score of the predictions
anomaly_score_mean
instance-attribute
#
Mean of anomaly scores across the dataset
anomaly_score_median
instance-attribute
#
Median of anomaly scores across the dataset
anomaly_score_variance
instance-attribute
#
Variance of anomaly scores across the dataset
GetMemorysetByNameOrIdMemoryByMemoryIdParams
#
DeleteMemorysetByNameOrIdMemoryByMemoryIdParams
#
PostEmbeddingModelUploadRequest
#
PostDatasourceUploadRequest
#
GetDatasourceByNameOrIdDownloadParams
#
GetClassificationModelParams
#
GetRegressionModelParams
#
GetPredictiveModelParams
#
GetTelemetryPredictionByPredictionIdParams
#
ClassificationMetrics
#
Bases: TypedDict
anomaly_score_mean
instance-attribute
#
Mean of anomaly scores across the dataset
anomaly_score_median
instance-attribute
#
Median of anomaly scores across the dataset
anomaly_score_variance
instance-attribute
#
Variance of anomaly scores across the dataset
pr_auc
instance-attribute
#
Average precision (area under the curve of the precision-recall curve)
confusion_matrix
instance-attribute
#
Confusion matrix where the entry at row i, column j is the count of samples with true label i predicted as label j